Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(4): 1739-1752, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581206

RESUMO

The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha- and beta-diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground-aboveground linkages, with multifaceted impacts on soil development and associated ecological processes.


Assuntos
Biodiversidade , Camada de Gelo , Micorrizas , Micorrizas/fisiologia , Camada de Gelo/microbiologia , Solo/química , Microclima , Microbiologia do Solo
2.
PLoS One ; 19(4): e0298905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578734

RESUMO

Nematodes are keystone actors of soil, freshwater and marine ecosystems, but the complexity of morphological identification has limited broad-scale monitoring of nematode biodiversity. DNA metabarcoding is increasingly used to assess nematode diversity but requires universal primers with high taxonomic coverage and high taxonomic resolution. Several primers have been proposed for the metabarcoding of nematode diversity, many of which target the 18S rRNA gene. In silico analyses have a great potential to assess key parameters of primers, including taxonomic coverage, resolution and specificity. Based on a recently-available reference database, we tested in silico the performance of fourteen commonly used and one newly optimized primer for nematode metabarcoding. Most primers showed very good coverage, amplifying most of the sequences in the reference database, while four markers showed limited coverage. All primers showed good taxonomic resolution. Resolution was particularly good if the aim was the identification of higher-level taxa, such as genera or families. Overall, species-level resolution was higher for primers amplifying long fragments. None of the primers was highly specific for nematodes as, despite some variation, they all amplified a large number of other eukaryotes. Differences in performance across primers highlight the complexity of the choice of markers appropriate for the metabarcoding of nematodes, which depends on a trade-off between taxonomic resolution and the length of amplified fragments. Our in silico analyses provide new insights for the identification of the most appropriate primers, depending on the study goals and the origin of DNA samples. This represents an essential step to design and optimize metabarcoding studies assessing nematode diversity.


Assuntos
Ecossistema , Nematoides , Humanos , Animais , DNA Ribossômico/genética , Código de Barras de DNA Taxonômico , Nematoides/genética , RNA Ribossômico 18S/genética , Biodiversidade
3.
Nat Plants ; 10(2): 256-267, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38233559

RESUMO

The mechanisms underlying plant succession remain highly debated. Due to the local scope of most studies, we lack a global quantification of the relative importance of species addition 'versus' replacement. We assessed the role of these processes in the variation (ß-diversity) of plant communities colonizing the forelands of 46 retreating glaciers worldwide, using both environmental DNA and traditional surveys. Our findings indicate that addition and replacement concur in determining community changes in deglaciated sites, but their relative importance varied over time. Taxa addition dominated immediately after glacier retreat, as expected in harsh environments, while replacement became more important for late-successional communities. These changes were aligned with total ß-diversity changes, which were more pronounced between early-successional communities than between late-successional communities (>50 yr since glacier retreat). Despite the complexity of community assembly during plant succession, the observed global pattern suggests a generalized shift from the dominance of facilitation and/or stochastic processes in early-successional communities to a predominance of competition later on.


Assuntos
Camada de Gelo , Plantas
4.
Glob Chang Biol ; 30(1): e17057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273541

RESUMO

The worldwide retreat of glaciers is causing a faster than ever increase in ice-free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global-scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice-free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r-ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K-ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.


Assuntos
Ecossistema , Nematoides , Animais , Solo , Camada de Gelo , Biodiversidade
5.
Mol Ecol ; 32(23): 6304-6319, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35997629

RESUMO

Ice-free areas are expanding worldwide due to dramatic glacier shrinkage and are undergoing rapid colonization by multiple lifeforms, thus representing key environments to study ecosystem development. It has been proposed that the colonization dynamics of deglaciated terrains is different between surface and deep soils but that the heterogeneity between communities inhabiting surface and deep soils decreases through time. Nevertheless, tests of this hypothesis remain scarce, and it is unclear whether patterns are consistent among different taxonomic groups. Here, we used environmental DNA metabarcoding to test whether community diversity and composition of six groups (Eukaryota, Bacteria, Mycota, Collembola, Insecta, and Oligochaeta) differ between the surface (0-5 cm) and deeper (7.5-20 cm) soil at different stages of development and across five Alpine glaciers. Taxonomic diversity increased with time since glacier retreat and with soil evolution. The pattern was consistent across groups and soil depths. For Eukaryota and Mycota, alpha-diversity was highest at the surface. Time since glacier retreat explained more variation of community composition than depth. Beta-diversity between surface and deep layers decreased with time since glacier retreat, supporting the hypothesis that the first 20 cm of soil tends to homogenize through time. Several molecular operational taxonomic units of bacteria and fungi were significant indicators of specific depths and/or soil development stages, confirming the strong functional variation of microbial communities through time and depth. The complexity of community patterns highlights the importance of integrating information from multiple taxonomic groups to unravel community variation in response to ongoing global changes.


Assuntos
Microbiota , Microbiologia do Solo , Bactérias/genética , Solo , Eucariotos , Fungos/genética , Microbiota/genética , Camada de Gelo/microbiologia
6.
Mol Ecol Resour ; 23(2): 368-381, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36052659

RESUMO

Clustering approaches are pivotal to handle the many sequence variants obtained in DNA metabarcoding data sets, and therefore they have become a key step of metabarcoding analysis pipelines. Clustering often relies on a sequence similarity threshold to gather sequences into molecular operational taxonomic units (MOTUs), each of which ideally represents a homogeneous taxonomic entity (e.g., a species or a genus). However, the choice of the clustering threshold is rarely justified, and its impact on MOTU over-splitting or over-merging even less tested. Here, we evaluated clustering threshold values for several metabarcoding markers under different criteria: limitation of MOTU over-merging, limitation of MOTU over-splitting, and trade-off between over-merging and over-splitting. We extracted sequences from a public database for nine markers, ranging from generalist markers targeting Bacteria or Eukaryota, to more specific markers targeting a class or a subclass (e.g., Insecta, Oligochaeta). Based on the distributions of pairwise sequence similarities within species and within genera, and on the rates of over-splitting and over-merging across different clustering thresholds, we were able to propose threshold values minimizing the risk of over-splitting, that of over-merging, or offering a trade-off between the two risks. For generalist markers, high similarity thresholds (0.96-0.99) are generally appropriate, while more specific markers require lower values (0.85-0.96). These results do not support the use of a fixed clustering threshold. Instead, we advocate careful examination of the most appropriate threshold based on the research objectives, the potential costs of over-splitting and over-merging, and the features of the studied markers.


Assuntos
Código de Barras de DNA Taxonômico , Eucariotos , Código de Barras de DNA Taxonômico/métodos , Análise de Sequência de DNA , DNA , Análise por Conglomerados
7.
Sci Total Environ ; 826: 154022, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35202680

RESUMO

Subterranean environments host a substantial amount of biodiversity, however assessing the distribution of species living underground is still extremely challenging. Environmental DNA (eDNA) metabarcoding is a powerful tool to estimate biodiversity in poorly known environments and has excellent performance for soil organisms. Here, we tested 1) whether eDNA metabarcoding from cave soils/sediments allows to successfully detect springtails (Hexapoda: Collembola) and insects (Hexapoda: Insecta); 2) whether eDNA mostly represents autochthonous (cave-dwelling) organisms or it also incorporates information from species living in surface environments; 3) whether eDNA detection probability changes across taxa with different ecology. Environmental DNA metabarcoding analyses detected a large number of Molecular Operational Taxonomic Units (MOTUs) for both insects and springtails. For springtails, detection probability was high, with a substantial proportion of hypogean species, suggesting that eDNA provides good information on the distribution of these organisms in caves. Conversely, for insects most of MOTUs represented taxa living outside caves, and the majority of them represented taxa/organisms living in freshwater environments (Ephemeroptera, Plecoptera and Trichoptera). The eDNA of freshwater insects was particularly abundant in deep sectors of caves, far from the entrance. Furthermore, average detection probability of insects was significantly lower than the one of springtails. This suggests that cave soils/sediments act as "conveyer belts of biodiversity information", possibly because percolating water lead to the accumulation of eDNA of organisms living in nearby areas. Cave soils hold a complex mix of autochthonous and allochthonous eDNA. eDNA provided unprecedented information on the understudied subterranean cave organisms; analyses of detection probability and occupancy can help teasing apart local eDNA from the eDNA representing spatially-integrated biodiversity for whole landscape.


Assuntos
DNA Ambiental , Animais , Biodiversidade , Cavernas , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Insetos , Solo
8.
Mol Ecol ; 30(13): 3313-3325, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33034070

RESUMO

Environmental DNA (eDNA) metabarcoding is becoming a key tool for biodiversity monitoring over large geographical or taxonomic scales and for elusive taxa such as soil organisms. Increasing sample sizes and interest in remote or extreme areas often require the preservation of soil samples and thus deviations from optimal standardized protocols. However, we still ignore the impact of different methods of soil sample preservation on the results of metabarcoding studies and there is no guideline for best practices so far. Here, we assessed the impact of four methods of soil sample preservation that can be conveniently used also in metabarcoding studies targeting remote or difficult to access areas. Tested methods include: preservation at room temperature for 6 hr, preservation at 4°C for 3 days, desiccation immediately after sampling and preservation for 21 days, and desiccation after 6 hr at room temperature and preservation for 21 days. For each preservation method, we benchmarked resulting estimates of taxon diversity and community composition of three different taxonomic groups (bacteria, fungi and eukaryotes) in three different habitats (forest, river bank and grassland) against results obtained under ideal conditions (i.e., extraction of eDNA immediately after sampling). Overall, the different preservation methods only marginally impaired results and only under certain conditions. When rare taxa were considered, we detected small but significant changes in molecular operational taxonomic units (MOTU) richness of bacteria, fungi and eukaryotes across treatments, but MOTU richness was similar across preservation methods if rare taxa were not considered. All the approaches were able to identify differences in community structure among habitats, and the communities retrieved using the different preservation conditions were extremely similar. We propose guidelines on the selection of the optimal soil sample preservation conditions for metabarcoding studies, depending on the practical constraints, costs and ultimate research goals.


Assuntos
DNA Ambiental , Biodiversidade , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Florestas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...